Coursework 1: ‘Create a simple L-System model’ - Liam Duffy

I have produced a short c++ program, using the rtvs_lite example as a base, to model and display l-systems. As I was given four requirements that this program should meet, it makes sense to discuss how each requirement was met in turn:

1 Read a configuration file containing L-System parameters

Shown below is the code for the function which reads the configuration files:

void getvars(const char* param_file, int &iter, float &angle, char* axiom, char* rule1, char* rule2)
{	
	std::ifstream in(param_file);
	int i;
	
	in >> iter;
	in >> angle;

	for(i = 0; i < 8; i++)
		axiom[i] = 0;
	in >> axiom;

	for(i = 0; i < 32; i++)
		rule1[i] = 0;
	in >> rule1;

	for(i = 0; i < 32; i++)
		rule2[i] = 0;
	in >> rule2;
	in.close();
}

The variables which need to be read are passed into the function. Line by line values are read into these variables using ‘in’, a member of the ifstream class, which is itself a member of the standard fstream library. Here is an example of the format of a configuration file, with each line labelled:

5			Number of iterations
25.7			Turning angle
F			Axiom
F[+F]F[-F]F		First Rule
null			Second Rule
(end)

The second rule reads ‘null’ in order to tell the program that there is no second rule; only the line before needs to be applied each iteration.

2 Display the resulting L-System model such that using Hotkeys successive iterations can be manually stepped through

L-system are rewriting systems, and as such it was necessary for the program to have rewriting functions. This was achieved via the use of the function ‘rulecopy’, which searches a string for a character, then once the character is found writes a ‘rule’ into another string. Both the character and the rule are passed to the function, allowing it to be repurposed to fit differing l-systems as the configuration files demand. Arrays are passed to the function as pointers, which reference the memory location of the first element of each array. For the array being written to, the pointer referencing it is not static. Every time a character is passed to the array via the pointer, it moves onto the next element. This is achieved via the ++ operator. I have read this is more efficient than accessing an array in other ways.

	int rulecopy (char *rule, char test, char *from, char *to) {
	// keeps track of how many characters we've written
	int i = 0;
	// keep parsing until end of string
	while(*from)
	{
		// if test, copy rule
		if(*from == test) {
			int j;
			for(j = 0; rule[j]; j++) {
				*to = rule[j];
				to++;
			}
			i += j;
		}
		// otherwise keep the same character
		else {
			*to = *from;
			to++;
			i++;
		}
		from++;
		// ensure null termination
		*to = 0;
	}
	return i;
}

A count is kept of how many times a character has been written, and this count is returned to the calling function. This allows to program to keep track of what element in the array it should write to next.

As l-systems require iteration, it was necessary to have a copying function, so that a process can be repeated on the same string again and again. If we did not copy the result from the process back into the original string, we would get the same result each time. This function was also useful for copying the final tree into the output string. It is shown below:

void copystring (char *from, char *to)
{
	while (*from)
	{
		*to = *from;
		to++; from++;
	}
	// ensure null termination
	*to = 0;
}

This would not bear much discussion, it simply copies one string into another. Let us instead discuss the meaning of the line ‘while (*from)’, which also appears in other functions. It controls the loop contained in the brackets below, allowing it to continue as long as ‘*from’ is non-zero. ‘*from’ is a character from the string being copied to, so the purpose of this is to test whether the string has ended or not; the characters after the ‘null’ character could be from a previous tree, or just random bits and bytes. We want to avoid reading them as this would cause an error.

To further ensure the smooth running of the program, the function ‘ensures null termination’ at its end. After the last character it needs to write, it appends a null character, so that other functions will recognise where the string ends. The other functions which help generate the string for the tree also have this behaviour, where a null character ends an operation if read, and null characters are appended to arrays when writing is finished.

Now we will look at the function which generates the full string used to display the tree;

void treegen(char *tree)
{
	// setup arrays, pointers, counter
	char temp2[MAX_LENGTH];
	char temp1[MAX_LENGTH];

	// decide method
	if(rule2[0] == 'n') {
		temp1[0] = 'F';
		temp1[1] = 0;
		for(int i = 0; i < iter; i++) {	
			rulecopy (rule1, 'F', temp1, temp2);
			// need to copy string back for iteration
			copystring(temp2, temp1);
		}
	}
	else {
		temp1[0] = 'X';
		temp1[1] = 0;
		for(int i = 0; i < iter; i++) {	
			rulecopy (rule1, 'X', temp1, temp2);
			rulecopy (rule2, 'F', temp2, temp1);
		}
	}

	// finally copy the tree for display
	copystring(temp2, tree);
}

Firstly two buffer strings are named, ‘temp1’ and ‘temp2’, so that one can hold the current string, and the other the previous string. This allows us to rewrite a string according to the rules, using the two functions described above. There are two methods for rewriting which can be used; depending on the config file, either one or two rules must be applied each iteration. The function decides between the two by looking at the second rule; as shown in section 1 if there is no second rule, ‘null’ will replace that line. As such, the function checks if the second rule begins with a ‘n’ character, and the method is chosen accordingly.

Now the tree has been generated, it can be displayed. This is achieved by using the built-in ‘display’ function in the rtvs example, and the following code which was added. First we will look at the setup for the text display:

// setup text display
char params[256];
if(rule2[0] == 'n') {
	sprintf_s(params,
		"Position: (%f, %f)\n\nZoom: %f\n\nStep: %d\n\nInitial: %f\n\nAngle: 
%f\n\nAxiom: %s\n\nRule 1: F -> %s",
		cam_x, cam_y, cam_z, iter, init_angle, angle, axiom, rule1);
		pFont -> DrawText(0, params, -1, &txt_bnd, 0, fontCol);
		}
	else {
	sprintf_s(params,
		"Position: (%f, %f)\n\nZoom: %f\n\nStep: %d\n\nInitial: %f\n\nAngle:
 %f\n\nAxiom: %s\n\nRule 1: X -> %s\n\nRule 2: F -> %s",
		cam_x, cam_y, cam_z, iter, init_angle, angle,  axiom, rule2, rule1);
		pFont -> DrawText(0, params, -1, &txt_bnd, 0, fontCol);
		}

This copies the variables to a formatted string, which is then displayed using the ‘DrawText’ function. There are two different methods, depending on the number of rules that should be displayed. Now we will look at the setup for the rendering:

		// draw tree

		pd3dDevice->SetMaterial(&lineMtrl);

		std::stack<Vertex> cur_pos;
		std::stack<float> cur_angle;
		Vertex s, e, line;
		char *treepos;
		treepos = tree;

		s.x = 0;
		s.y = 0;
		s.z = 0;

		line.x = 0;
		line.y = 0.1f;
		line.z = 0;

		e.x = 0;
		e.y = 1;
		e.z = 0;

		line_angle = init_angle * 0.0174f;

Stacks, container types included in the standard C++ library, are used to allow the display system to hold values for position and angle as it follows each ‘branch’ of the tree. When a branch ends (signified by the ] character), we can ‘pop’ back to the previous branch. When a new branch starts, (signified by the [ character), we can ‘push’ new values onto the stack, knowing

The default values for the first line are then defined, along with its start and end, and its angle. The latter defaults to 0, but ‘init_angle’ can be adjusted using the up and down arrow keys, which allows the user to ‘lean’ the tree. Now we will examine the code which parses the tree string, and generates lines for the program to display:

		while (*treepos)
		{
			if (*treepos == 'F')
			{
				e.x = s.x + line.x * cosf(line_angle) - line.y * sinf(line_angle);
				e.y = s.y + line.x * sinf(line_angle) + line.y * cosf(line_angle);
				e.z = s.z + line.z;
				
				// update vertex buffer
				updateVertexBuffer(s, e);;

				// draw a single line
				pd3dDevice->DrawPrimitive( D3DPT_LINELIST, 0, 1 );

				s.x = e.x;
				s.y = e.y;
				s.z = e.z;
			}
         
			else if (*treepos == '[')
			{
				cur_pos.push(s);
				cur_angle.push(line_angle);
			}

			else if (*treepos == ']')
			{
				s = cur_pos.top();
				cur_pos.pop();
				line_angle = cur_angle.top();
				cur_angle.pop();
			}

			else if (*treepos == '+')
				line_angle += angle * 0.0174f;

			else if (*treepos == '-')
				line_angle -= angle * 0.0174f;

			treepos++;
      }

The tree string is parsed, with different actions required depending on the character encountered. ‘F’ requires a line to be drawn. The endpoint of the line at the top of the stack is extended, according to the current angle of the branch, and then the vertex buffer is updated to include this line. Then the start of the line is made equal to the end, to prepare for the next branch.

If ‘]‘ or ‘[’ are encountered, the stacks are popped or new variables pushed accordingly. If ‘+’ or ‘-’ are encountered, the current ‘line_angle’ is adjusted according to the turning angle of the current l-system (which must first be converted from degrees into radians).

3 Hotkey the read configuration file process such that different hotkey can load and display at least four different configuration files

4 Hotkey the increment/decrement of at least three of the L-System parameters which are then used to recreate the L-System model

This was achieved by extending the ‘updateKeyboard’ function included in the example, so that its functionality was extended to suit these new purposes. For instance, loading configuration files was achieved by using ‘updateKeyboard’ to call ‘getvars’ and ‘treegen’ when a key in the range F1 - F6 was pressed. Where the increment / decrement of a parameter was needed, ‘updateKeyboard’ was used to change variables analogous to these parameters, and then the code used to display the l-systems was changed so it could be affected by these variables. This is discussed further in section 2, where the methods used to the display the l-system are explored more generally.
